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ABSTRACT 

3/18 
The usual idealizations in cosmology, which are 

used with the general theory of relativity for deriving 
the cosmological equations, lead to the idea of a par- 
titioned universe and to the boundary conditions neces- 
sary for isolating a small region or cell of space. An 
isolated cell, infinitesimally small and embedded in 
flat space, forms the basis of a microcosmic model 
of the universe. An internal observer perceives an 
expanding unbounded universe and applies the same 
theoretical concepts commonly used in macrocosmic 
models. H e  is also fPee to work within the framework 
of special relativity theory, and from the first law of 
thermodynamics and the equations of hydrodynamics 
is able to derive the cosmological equations without 
the aid of general relativity and without making any 
approximations. The application of the cosmological 
principle to a universe containing a uniform perfect 
fluid accounts for the complete equivalence of the 
microcosmic model with the usual macrocosmic 
models. In many of its properties the microcosmic 
model closely resembles Newtonian cosmology; it 
avoids however the ambiguous nature of the gravita- 
tional field in a uniform unbounded fluid and is also 
not limited in its treatment to a pressure-free 
universe. 
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COSMOLOGY WITHOUT GENERAL RELATIVITY 

I. INTRODUCTION 

The cosmological equations are normally and properly derived from general 
relativity theory with the aid of the cosmological principle. The possible models 
of the universe are then classified according to whether the curvature constant 
of the metric is positive, zero, o r  negative. 

In 1934, McCrea and Milne used Newtonian theory to derive the cosmological 
equations for a universe in which the pressure is zero. Although a Newtonian 
treatment is not entirely free from ambiguity2, 3,4 it is nevertheless valuable 
for revealing the implicit simplicity of the cosmological equations. The success 
of McCrea and Milne's work raises the question: what adaptation or extension 
of the Newtonian treatment is needed in the more general case of a non-zero 
pressure? (without, of course, the help of supplementary theorems from general 
relativity, a s  in Reference 5). It is assumed that the universe contains a perfect 
fluid and is homogeneous and isotropic at every point in space. The idea of a 
partitioned universe then leads to the boundary conditions necessary for isolating 
a small region or  cell of space. Such a cell, infinitesimally small, isolated and 
embedded in flat space, forms the basis of a microcosmic model of the universe. 
When the fluid is pressure-free the model obeys the Newtonian equations ac- 
curately. This method avoids the ambiguous nature of the gravitational field in 
a uniform and infinitely extended Newtonian universe. By working within the 
framework of special relativity we furthermore obtain the cosmological equations 
in the more general case of a non-zero pressure. 

It is emphasized that the general theory of relativity provides the most elegant 
and effective approach to cosmology, and the approach outlined in this discussion 
does not pretend in any way to supplant its superior position. The present ap- 
proach offers insight into the physical nature of the cosmological equations and 
of the idealizations on which they are founded. 

In Section II the cosmological principle is considered briefly and also the 
results from general relativity for an idealized universe. In Section III the 
notion of a partitioned universe is outlined and this leads in Section IV to a study 
of the microcosmic model. Some comparisons and comments are made in Sec- 
tion V coacerning Newtonian cosmology and the physics of the microcosmic 
model a re  discussed in Section VI. 
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11. THE COSMOLOGICAL PRINCIPLE AND GENERAL RELATIVITY 

If space has uniform curvature the line-element is 

In this metric intervals of cosmic time t a re  measured along world-lines or- 
thogonal to a spatial hypersurface of uniform curvature which is mapped with 
r, e, 6 comoving coordinates. The curvature constant is k = 0, f 1. 

The cosmological principle states that at  any instant of cosmic time the 
universe appears the same for all comoving observers. Generally, the local 
environment of an observer is irregular. Matter tends to aggregate into objects 
of stellar and galactic size and is rarely distributed uniformly in relatively 
small regions of space. The average energy density E ( r ,  e,+) in a region of 
volume V is 

The cosmological principle is a meaningful postulate when 

where 8~ is a negligible quantity, U is everywhere small in comparison with 
the observable universe, and E(t )  is the average energy density of the universe. 
The small-scale irregularities a r e  smoothed out as V increases and eventually 
< E >  becomes E(t) and the centre of mass of U is stationary in the comoving co- 
ordinate system, 

Instead of the actual universe it is usual to consider an idealized universe that 
is isotropic and homogeneous a t  all points in conformity with the Robertson line- 
element (Equation l), and contains a uniform perfect fluid of proper energy density 
E ( t )  and isotropic pressure p(t). The energy-momentum tensor T j  for the perfect 
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. fluid in an idealized universe is 

The line-element (Equation 1) and the energy-momentum tensor (Equation 3) are 
geometrical and kinematical interpretations of the cosmological principle, and 
all that remains is to determine R(t) in Equation (1) with the general mlativity 
equation 

where G is the gravitational constant. 

The solution of this equation, given (Equation 1) and (Equation 3), is 

where dots denote differentiation with respect to time. These a re  the well-known 
cosmological equations, and they a re  often written in the alternative form 

= o  dR3 - d (d3) + P dt 
dt 1 

where p = E / C ’  is the mass density. 

III. A PARTITIONED UNIVERSE 

Let the universe be divided into cells, of volume V, with comoving imaginary 
partitions that a re  perfectly reflecting for incident particles and radiations. In 
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the actual universe each cell must be at least as large as  U to contain average 
conditions, whereas in an idealized universe V has in principle no lower limit. 
The presence of the non-absorbing, massless partitions in no way affects either 
the properties of the universe or the internal state of the cells. The cosmologi- 
cal equations apply to an idealized universe and in seeking an alternative deri- 
vation of these equations we must adopt the same idealizations. It follows that 
the cells, no matter how small they a re  made, have at each instant of cosmic 
time contents which are in an identical state. 

. 

If now all partitions a re  removed except for the boundaries of a given cell, 
an observer inside this cell discovers conditions identical with those discovered 
by an observer anywhere outside. The internal observer, although isolated, is 
in no ways handicapped in his study of the universe (Section VI). For example, 
owing to the repeated reflection of photons by the expanding walls, he observes 
red-shifted radiation sources in the same way as the external observer. Pro- 
vided his boundary conditions are  properly maintained it will have no effect if  
the rest of the universe ceases to exist. 

The internal state of a cell is independent of the volume chosen and there- 
fore we are  free to consider a cell of an infinitesimally small volume. As  
V -, 0, the metric of the cell becomes flat, and the internal state remains un- 
changed if the cell is isolated and embedded in the flat metric of special rela- 
tivity. The cell remains a faithful representation of the idealized universe and 
can be regarded a s  a microcosmic model. 

IV. THE MICROCOSMIC MODEL 

8 

The notion of a vanishingly small microcosm of the universe embedded in 
a flat metric is no more than an interpretation of the cosmological principle 
applied to a perfect fluid. The microcosmic model, however, allows us to deal 
with a range of comological problems without resorting to general relativity. 

Validity of the Newtonian Approximations 

We assume for convenience that the cell is spherical and has a radius a. 
We consider always a cell of infinitesimal radius such that the metric is flat. 
The comoving coordinates of an element of fluid in the cell are 

- r - S(t)r,,  , 6 = 6, , 4 = 6, 
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where r is the distance from the center of the cell, ro is the distance at time to, 
and S is a function of time with S(t,) = 1. A cell possessing uniform properties 
preserves its uniformity as it dilates or contracts. The velocity of a fluid ele- 
ment is 

(8) - v - kr,, 

From general relativity theory the metric in the weak field approximation is 

ds2 = d t 2  (c' + 2$) - dr2 - r2 (de2 + sin2 0 ck#~~) 

for v2 *: c2, 2 
is flat when 

<< c2 , where IC, is the gravitational potential. Hence the metric 

and these Conditions can always be achieved by selecting a cell of sufficiently 
small radius a. Thus as a --. 0 (this does not mean that a cell of initially finite 
radius shrinks to  zero as this would violate the conditions (Equation 9), but 
means that a cell of vanishingly small radius is chosen and isolated from the 
universe), the geodesic equations of the fluid elements are accurately given by 
the Newtonian equations of motion: 

The conditions (Equation 9) for a flat metric also justify the use of Poisson's 
equation (for example, Tolman7, p. 200). However, the sources of the gravitational 
field have so far not been specified. Although the Newtonian approximations apply 
quite accurately to the fluid motion we are still working within a special rela- 
tivity framework and therefore energy has an equivalent mass. The ratio of 
the total kinetic energy to EV is of the order S a /S2, and the ratio of the gravi- 
tational potential energy to EV is of the order Gpa2, and according to (Equation 9) 
the equivalent mass contribution of both the kinetic and potential energies is 
vanishingly small. 

'2  2 
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Energy Equation 

From the first law of thermodynamics, dE + pdV = 0, where dE is the in- 
crease in the internal energy of the cell, pdV is the work done in expanding 
against pressure p, and S Q  = 0 because no heat crosses the cell boundary. The 
energy in the cell is E = EV, and therefore the adiabatic equation is 

since V a  S3. Equation (l la) or its alternative form 

- aP a t  + div ( p  + p/c2) = 0 

can be obtained in special relativity using TL,, = 0 (p  = 4) and v/c -+ 0. Equation 
(l la) does not imply that entropy is necessarily constant. Variations in the 
composition of the fluid can be associated with entropy changes (Tolman7, 
Chapter IX). 

Boundarv Stress e s 

Outside the microcosmic cell the pressure is zero and the sphericalboundary, 
unlike the imaginary partitions in an idealized universe, is now real in the sense 
that it must exert an inwardly directed force to maintain the cell in a quasi-static 
state. This boundary force contributes a stress-energy to the total energy of 
the cell. In some respects the cell is analogous to a soap bubble in a vacuum; 
the surface stresses contribute an energy of 3pV. The relativistic form of the 
virial theorem is 

where the summation is over all particles in V, of momentum p and mass m inter- 
acting with each other through forces ,F, and the surface integrxl, equal to 3pV, 
is the energy of the boundary stresses. The virial theorem is commonly used 
for evaluating the kinetic and interaction energies of an enclosed gas in terms 
of the boundary stress-energy (for example, Jeans8), and this stress-energy is 
then excluded from the kinetic properties of the fluid since it exists merely to 
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- preserve the fluid in an isolated, quiescent state. When the pressure vanishes 
at the boundary, as for a star, the left hand side of Equation (12) contains a term 

and this stress-energy is equal to the negative gravitational potential e n e d .  
In the microcosmic model the fluid is not gravitationally bound but is confined 
by a system of stresses that allow the density and pressure to remain uniform. 
Either we imagine these stresses applied to a single spherical boundary or  to an 
arrangement of partitions within the cell; in any event, the stresses contribute 
3pV to the energy of the cell o r  3pv/c2 to its mass. ~f these stresses are neg- 
lected the fluid will disperse because of the random motions of its particles and 
the essential properties of the model will be lost. 

The mass of the microcosmic cell is ( p  + 3p/c2)V. Using general relativity 
theory, Tolman', p. 235 derives a similar expression for the energy of a qui- 
escent mass, and Whittakerlo shows that in effect p + 3p/c2 is the density of 
the gravitational mass. 

Although the fluid velocity is small the individual particles composing the 
fluid may have relativistic speeds; the stress-energy contribution is then quite 
important. To suppose that the stress-energy resides solely in a spherical 
boundary, as in the.case of a soap bubble, creates the anomaly that the boundary 
and the adjacent fluid have different equations of motion. Hence we must suppose 
that in addition to the spherical boundary there is an indefinitely large number 
of internal partitions and the stress-energy is uniformly distributed and has a 
value of 3p per unit volume. 

Poisson's equation is therefore 

v2$J = 4nc ( p  + 3p/c2) 

Equations of Motion 

Poisson's equation and the equations of energy and motion are 
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- d i v  ( p  t p/c2) 3 2 :  a t  

dv 
d t  - w  - =  - 

Since v = Sro, the equation of motion becomes - -  

using Equation (13) and Equation ( l l a ,  or b). Integrating Equation (14), we find 

877G $2 - 3 ps2 - c 

where C is a constant for all fluid element S is arbitrary within a constant 
multiplying factor depending on the time to chosen to satisfy S(t,) = 1. By 
redefining S such that S(t) = R(t) 1 CIS c-l , S(to) = I C rh c-l , Equation (15) 
becomes 
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where k = 0, f 1. This is the integrated equation of motion of the microcosmic 
model, and because it applies for all infinitesimally small cells it is also true 
for the idealized universe. Poisson's equation (13) cannot be transferred from 
the microcosmic model, and the only surviving equation ( l l a ,  or  b) applicable 
to all cells and also true for the idealized universe is 

Equations (16) and (17) are the cosmological equations (6a, b) and have been 
derived by means of the microcosmic model without general relativity theory. 
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v. NEWTONIAN COSMOLOGY 

The equations used in Newtonian cosmology1,11,12 are Equations (lo),  
(11) and (13) with the pressure equal to zero, If the gravitational force and 
velocity fields are isotropic for a given inertial observer, they are also isotropic 
for all non-inertial observers moving with the fluid3,13. The fluid elements 
have velocities less than, equal to, o r  greater than the escape velocity, and their 
trajectories are respectively elliptical (k = + l), parabolic (k = 0) or hyperbolic 
(k = -l), corresponding to elliptical, flat, o r  hyperbolic space. Newtonian cos- 
mology provides an admirable description of the contemporary universe in 
which the pressure is relatively small. Callan, Dicke, and Peeblesl* point 
out that the Newtonian treatment is a perfectly correct method, They consider 
a spherical volume of the universe sufficiently small to justify the Newtonian 
approximations; they dr, not isolate this spherical element and embed it in flat 
space as in the microcosmic model. 

Consider two observers A and B comoving with the fluid. Let A project a 
test particle a towards B, a d  let B project a test particle b’ towards A at the 
same proper speed and at the same instant of cosmic time. In an isotropic and 
homogeneous universe a must arrive at B at the same instant and with the Same 
proper speed as ,8 arrives at A. Let us now suppose that A and B are both centers 
of isotropic gravitational fields. Then A will expect a to arrive at B later than 
,8 arrives at A; and vice versa, B will  expect ,B to  arrive at A later than a arrives 
at B. Both cannot be correct, and the concept of a gravitational field necessarily 
implies #at A and B are strictly not equivalent. In Newtonian cosmology this 
loss of equivalence is expressed by the fact that all observers are non-inertial 
with respect to each other. 

A possible objection to Newtonian cosmology is the ambiguous nature of the 
gravitational field in a uniform unbounded fluid. Layzer2 attempts to avoid this 
difficulty by considering a spherical volume of a pressure-free universe, of arbi- 
trary size and embedded in empty space, and finds it necessary to use general 
relativity theory. (The microcosmic model is in fact a combination of the ideas 
of Dicke et al. and Tayzer.) McCrea3 avoids the difficulty with the suggestion 
that the Newtonian universe is regarded as a bounded but arbitrarily large sys- 
tem. For a closed boundary Dirichlet conditions are sufficient to establish 
everywhere a unique gravitational potential; moreover, if the boundary is spherical, 
it is reasonable to assume that its center is inertial. Using Newtonian theory, 
the cosmological equations are derived self-consistently and most simply for 
the central observer, and the validity of the equations for all observers is de- 
duced from kinematic considerations. Any non-central observer, retaining the 
same boundary conditions, can derive identical equations from Newtonian theory 
if he allows for his non-inertial framework. This implies that such an observer 
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is aware of the locations of a unique inertial center from which all matter in 
the universe is diverging. 

In Newtonian cosmology the universe is spatially bounded and therefore 
contains a unique central observer; this conclusion seems inescapable. Such 
a universe fails to conform with the mediaeval form of the cosmological prin- 
ciple15: "the fabric of the world" has\"its center everywhere and its cir- 
cumference nowhere". Many may think that this is of no great consequence. 

VI. DISCUSSION 

The usual idealizations employed in cosmology lead naturally to the idea of 
a partitioned universe containing infinitesimally small cells. The walls of each 
cell a r e  perfectly smooth and reflecting and an observer inside any cell perceives 
conditions identical with those perceived in the absence of the partitions. If his 
cell contains discrete sources of radiation, he observes, because of multiple re- 
flections, an extended, expanding, and apparently unbounded universe of discrete 
sources. To this multiple-image universe he applies the cosmological principle 
and deduces that the universe has a uniform metric given by Equation (1). If he 
is aware of the reflecting walls he can use periodic boundary conditions for cal- 
culating the red-shift, and for a highly relativistic particle, photon, o r  neutrino, 
assert that 

and the red-shift is 

where X is the wavelength. Or,  using special relativity, the total coordinate 
path length is 

10 



and for two light rays emitted by the same source at times t 1 and tl + dt , and 
received at t2 and tz + dtz, respectively, the coordinate path length is invariant 
and therefore 

in agreement with Equation (18). Or, ignoring the reflecting walls and using the 
general line-element (1) for the multipleimage universe, he again derives the 
red-shift equations (18), and furthermore, deduces a luminosity-distance and 
the distances by v o l m e  and apparent size, and finally uses general relativity 
a s  the rational theory to obtain the cosmological equations. 

But an internal observer need not use general relativity theory to obtain 
the cosmological equations if he supposes that his infinitesimally small cell 
terminates at its boundary in flat, empty space. This is the microcosmic model 
of the universe. Provided the fluid contained in the cell is pressure-free, the 
Newtonian treatment is valid and leads to perfectly correct results. When, how- 
ever, the pressure is not zero, stresses must be incorporated in the cell to 
maintain it in a quasi-static state. If the pressure is large the individual particle 
motions and the interacting fields require special relativity theory for their 
treatment. From the point of view of the microcosmic model the structural 
stresses needed for isolation in flat space increase the energy of the cell, and 
the mass-equivalent is an additional source of the gravitational field. When 
this increased gravitational field is used in the Newtonian equation of motion 
for the fluid elements we derive, with the aid of the first law of thermodynamics, 
the cosmological equations. 

As in the case of Newtonian cosmology, the microcosmic model gives a 
physical interpretation of the cosmological equations. By focusing attention 
on a representative infinitesimally small element of the universe, it reveals 
and exploits the far-reaching nature of the idealizations on which cosmology 
is founded. 

. 
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